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Abstract
Large Language Models (LLMs) excel in text generation, reasoning,
and decision-making, enabling their adoption in high-stakes do-
mains such as healthcare, law, and transportation. However, their
reliability is a major concern, as they often produce plausible but
incorrect responses. Uncertainty quantification (UQ) enhances trust-
worthiness by estimating confidence in outputs, enabling risk miti-
gation and selective prediction. However, traditional UQ methods
struggle with LLMs due to computational constraints and decod-
ing inconsistencies. Moreover, LLMs introduce unique uncertainty
sources, such as input ambiguity, reasoning path divergence, and
decoding stochasticity, that extend beyond classical aleatoric and
epistemic uncertainty. To address this, we introduce a new taxon-
omy that categorizes UQmethods based on computational efficiency
and uncertainty dimensions (input, reasoning, parameter, and pre-
diction uncertainty). We evaluate existing techniques, assess their
real-world applicability, and identify open challenges, emphasizing
the need for scalable, interpretable, and robust UQ approaches to
enhance LLM reliability.
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1 Introduction
Large Language Models (LLMs) like GPT-4 [1] and PaLM [2] have
achieved remarkable capabilities in text generation, reasoning, and
decision-making, driving their adoption in high-stakes domains
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such as healthcare diagnostics [24, 38, 105, 128], legal analysis [12,
29, 54], and transportation systems [18, 58, 67, 165]. However, their
reliability remains a critical concern: LLMs often produce plausible
but incorrect or inconsistent outputs, with studies showing that
over 30% of answers in medical QA tasks contain factual errors [57].
In sensitive applications, these limitations pose risks ranging from
misinformation to life-threatening misdiagnoses, underscoring the
urgent need for robust reliability frameworks.

Uncertainty quantification (UQ) emerges as a pivotal mechanism
to enhance LLM trustworthiness by explicitly modeling confidence
in model outputs. By estimating uncertainty, users can identify
low-confidence predictions for human verification, prioritize high-
certainty responses, and mitigate risks like overconfidence in hal-
lucinations [83, 120]. For instance, in clinical settings, uncertainty-
aware LLMs could flag uncertain diagnoses for specialist review,
reducing diagnostic errors by up to 41% [116]. This capability is
particularly critical as LLMs transition from experimental tools to
production systems requiring accountability.

Traditional UQ methods face significant hurdles when applied to
Large Language Models (LLMs). Bayesian approaches like Monte
Carlo dropout [34] are computationally prohibitive for trillion-
parameter models and natural language generation (NLG) tasks,
while ensemble methods struggle with consistency across diverse
decoding strategies [85]. Furthermore, LLMs introduce unique un-
certainty sources—such as input ambiguity [9, 41], reasoning path
divergence, and decoding stochasticity—that transcend classical
aleatoric and epistemic categorizations [51]. The complexity of
LLMs, characterized by sequence generation over vast parameter
spaces and reliance on massive datasets, exacerbates uncertainty
challenges. This complexity, coupled with the critical need for reli-
able outputs in high-stakes applications, positions UQ for LLMs as
a compelling yet underexplored research frontier.

This tutorial introduces a novel taxonomy for LLM uncertainty
quantification, categorizing methods along two axes: (1) computa-
tional efficiency (e.g., single-pass vs. sampling-based techniques)
and (2) uncertainty dimensions (input, reasoning, parametric, pre-
dictive). Our framework addresses three gaps in prior work: First,
it decouples uncertainty sources unique to LLMs from traditional
ML contexts. Second, it evaluates methods through the lens of dif-
ferent dimensions of the responses from LLM: input uncertainty,
reasoning uncertainty, parameter uncertainty, and prediction uncer-
tainty. Each of these dimensions may involve aleatoric uncertainty,
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epistemic uncertainty, or a mixture of both. Third, it identifies un-
derstudied areas like reasoning uncertainty, which accounts for
58% of errors in multi-step QA tasks [20].
Contributions: We provide (1) the first systematic review of UQ
methods tailored to different dimensions of uncertainty in LLM,
including input, reasoning, parameter, and prediction uncertainty;
(2) a comprehensive introduction to the evaluation of UQ methods
and the challenges.
Connection to Existing Surveys: Prior surveys [7, 45, 48, 108,
118, 157] focus narrowly on hallucination detection or retrofitting
classical UQ taxonomies, neglecting LLM-specific challenges like
prompt-driven input uncertainty. Our work uniquely addresses the
interplay between model scale, open-ended generation, and uncer-
tainty dynamics—factors critical for modern LLMs but overlooked
in earlier frameworks.

The remainder of this survey is structured as follows: Section 2
characterizes LLM uncertainty dimensions and differentiates confi-
dence from uncertainty. Section 3 evaluates UQ methods using our
taxonomy. Section 4 introduces the evaluation of UQ methods for
LLM. Sections 5 and 6 introduce the applications of UQ in different
domains with LLMs and identify open challenges and future direc-
tions. Table 1 shows the notation and Table 2 shows an overview
of all methods we discuss in this paper.

2 Perliminaries
2.1 Sources of Uncertainty in LLMs
2.1.1 Aleatoric vs. Epistemic Uncertainty. For uncertainty quantifi-
cation of traditional machine learning tasks such as classification
or regression [149], there are mainly two types of uncertainty [28]:
aleatoric and epistemic uncertainty. Aleatoric uncertainty defines
the uncertainty from noise in the dataset. Epistemic uncertainty,
on the other hand, arises from the model’s lack of knowledge about
the underlying data distribution.

Aleatoric uncertainty in LLMs primarily stems from data sources
used to train LLMs, which contain inconsistencies, biases, and con-
tradicting information. Furthermore, ambiguity in natural language
contributes to aleatoric uncertainty, as different interpretations of
the same prompt can lead to multiple plausible responses.

On the other hand, When encountering unfamiliar topics, LLMs
may exhibit high epistemic uncertainty, often manifesting as hal-
lucinations or overconfident yet incorrect statements. Epistemic
uncertainty can be reduced through domain-specific fine-tuning or
retrieval-augmented generation techniques that allow the model to
access external knowledge sources.

Though uncertainty for LLMs can also be classified as these two
categories, these two categories alone are insufficient to fully cap-
ture the complexities of uncertainty in the language model. The
unique nature of LLM inference introduces additional uncertainty
factors. In particular, LLMs exhibit uncertainty not only due to train-
ing data limitations but also due to input variability and decoding
mechanisms. Therefore, to address these challenges, we introduce
four new dimensions of uncertainty.

2.1.2 Uncertainty with Different Dimensions. To systematically ana-
lyze uncertainty in LLMs, we categorize it into four key dimensions:
input uncertainty, reasoning uncertainty, parameter uncertainty,

Notation Description

𝑥 The question that LLMs answer
𝑠 Generation from LLMs
𝑤𝑖 i-token in the generation 𝑠

D Dictionary of LLMs
𝑈 (𝑥) Uncertainty of question 𝑥

𝐶 (𝑥, 𝑠) Confidence of generation 𝑠 given 𝑥

𝐻 (𝑠) Entropy of generation 𝑠

Table 1: Notation used in this paper.

and prediction uncertainty. Each dimension may involve aleatoric
uncertainty, epistemic uncertainty, or a combination of both. This
structured framework provides a more comprehensive understand-
ing of uncertainty quantification in LLMs.
Input Uncertainty (Aleatoric Uncertainty): Input uncertainty
arises when a prompt is ambiguous or underspecified, making it
impossible for an LLM to generate a single definitive response. This
is inherently aleatoric, as even a “perfect model” cannot resolve
the ambiguity. For instance, “What is the capital of this country?”
lacks sufficient context, leading to unpredictable outputs. Similarly,
“Summarize this document” may yield different responses depend-
ing on different expected details.
Reasoning Uncertainty (Mixed Uncertainty): Reasoning uncer-
tainty occurs when an LLM derives answers through multi-step
logic or retrieval, leading to ambiguous or incorrect reasoning. This
uncertainty is aleatoric when the problem itself is ambiguous and
epistemic when the model cannot offer robust reasoning.
Parameter Uncertainty (Epistemic Uncertainty): Parameter un-
certainty stems from gaps in the training data, where the model has
either never seen relevant information or has learned an incorrect
representation. Unlike aleatoric uncertainty, epistemic uncertainty
can be reduced by improving the model’s knowledge base. Bayesian
methods [34], deep ensembles [68], and uncertainty-aware train-
ing [96] can help quantify and mitigate this type of uncertainty.
Prediction Uncertainty(Mixed Uncertainty): Prediction uncer-
tainty refers to variability in generated outputs across different
sampling runs, influenced by both aleatoric and epistemic sources.
For example, when asked, “What are the side effects of a new ex-
perimental drug?” the model’s responses might vary significantly
across different sampling runs, especially if no reliable data is avail-
able in its training set. A high-variance output distribution in such
scenarios suggests that the model is both aware of multiple possi-
ble answers, reflecting aleatoric uncertainty, and uncertain due to
incomplete knowledge, highlighting epistemic uncertainty.

2.2 Uncertainty and Confidence in LLMs
Uncertainty quantification and confidence estimation are closely
related yet distinct concepts in the context of large language models
(LLMs). Uncertainty is a property of the model’s predictive distri-
bution, capturing the degree of variability or unpredictability given
a particular input. In contrast, confidence reflects the model’s belief
in the correctness of a particular answer or prediction. As a con-
crete example, in the context of classification, a simple confidence
measure is the predicted probability 𝑝 (𝑌 = 𝑦 |𝑥) (an uncertainty
measure which does not depend on the particular prediction𝑦 could
be entropy, taking the form of

∑
𝑦 −𝑝 (𝑌 = 𝑦 |𝑥) log 𝑝 (𝑌 = 𝑦 |𝑥)). The
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corresponding confidence score in NLG (for an auto-regressive
LM) is the joint probability for the generated sequence:

𝐶 (x, s) = 𝑝 (s|x) =
∏
𝑖

𝑝 (𝑠𝑖 |s<𝑖 , x) . (1)

The log of Eq. (1) is sometimes referred to as sequence likeli-
hood [162]. In general, while an uncertainty estimate takes the
form of 𝑈 (𝑥), confidence estimates could be expressed as 𝐶 (x, s).
Note that unlike classification tasks, not all NLG applications have
the notion of a “correct” answer (e.g. summarization). Thus, while
for the ease of writing we use the term correctness throughout this
section, it should really be interpreted as the gold-label for the par-
ticular application. Note also that in most cases, the correct answer
is not unique, and thus such gold-label typically takes the form of a
“correctness function” that decides whether a particular generation
s is good or not. We will denote such a function as 𝑓 (s|x).

There are usually two dimensions along which researchers
improve confidence estimates in NLG, which is unsurprisingly
largely influenced by confidence scoring literature from classifica-
tion [16, 55], especially binary classification. We refer to them as
ranking performance and calibration:

• Ranking performance refers to the discriminative power of the
confidence measure on the correctness. Like in classification, LLM
confidence is often evaluated by its ability to separate correct and
incorrect answers, thus typically measured by evaluation metrics
like AUROC [60] or AUARC [79] as detailed in Section 4.

• Calibration refers to closing the gap between the confidence score
and the expected correctness conditioned on confidence score. It has a
long history preceding LLM or even modern machine learning [26,
98, 99], but bears slightly different meanings in NLP. In general, we
could define a perfectly calibrated confidence measure to achieve
the following:

∀𝑐,E[𝑓 (s|x) |𝐶 (x, s) = 𝑐] = 𝑐, (2)

where the expectation is taken over the joint distribution of x and
generation s. A lot of papers focus on evaluating the calibration
quality of specific LMs and tasks [62, 64, 135]. Evaluation typically
relies on variants of Expected Calibration Error (ECE) [64, 72, 125].
Oftentimes confidence scores from classification could be directly
applied [56, 121, 163] in order to evaluate whether an LM is over-
or under-confident, especially for de facto classification tasks like
sentiment analysis or multiple-choice QA.

As uncertainty and confidence are often intertwined, many ap-
proaches used in uncertainty quantification have their counterpart
in confidence estimation. For example, for black-box methods, Lin
et al. [78] computes a similarity matrix of sampled responses and
derives confidence estimates for each generation via its degree
or distance derived from the graph Laplacian, before using these
scores to compute uncertainty. Zhang et al. [154] extends such
black-box methods to longer generations. For logit-based methods,
Malinin and Gales [87] normalize Eq. (1) with the length of s. Fur-
ther improvements include replacing the logit-sum or mean with
weighted sum, by attention values on the important tokens [79]
or by importance inferred from natural language inference (NLI)
models [30]. Such variants of sequence likelihood could then be fed
for (entropy-style) uncertainty computation [63, 79].

Another popular approach is asking the LM itself whether a par-
ticular free-form generation is correct [60]. However, this formula-
tion also poses a restriction on the confidence estimation method,
as it is essentially a scalar logit. Thus, many extensions focus on
applying calibration methods from classification to calibrate such
self-evaluation. The few exceptions include Ren et al. [113], which
generalizes Kadavath et al. [60] and converts samples from free-
form generation into a multiple-choice question (with generations
being the options) and adding a "None of the above" option to elicit
the confidence. Similarly, Shrivastava et al. [119] performs the ex-
plicit relative comparison of pairs of answers and then aggregates
the preferences into an absolute confidence level.

Since we typically care about the LM’s confidence in the “se-
mantic space” due to semantic invariance, instead of manipulating
logits, a popular approach is to perform additional training for
confidence estimation. This could be done on the base LM (either
full LM [56, 61, 162] or partial [83]) with a different loss, or using
a separate model on the internal or external representations from
the base LM [3, 53, 90, 112, 129]. On the other end of the spectrum,
without any training, prompting could be used to elicit verbalized
confidence values [125, 140], or to recalibrate LLM confidence for
a particular distribution [72] via in-context learning. Finally, one
could combine multiple confidence estimation methods and enjoy
the benefit of ensembling [35].

Just like the evaluation for uncertainty quantification (more
in Section 4), the choice of correctness function has a profound
impact on the conclusion of the experiments, especially for free-
form generation tasks. Popular choices include using (potentially
larger) LLM as judges [78, 83, 125], human annotations [90, 113], or
lexical similarities such as ROUGE [63, 162]. Recently, Liu et al. [84]
proposes to evaluate free-form generation confidence measures
with selected multiple-choice datasets as an efficient complement.
For longer generations, Huang et al. [50] proposes to use ordinal
(not binary) correctness values to capture the ambiguity in the
quality of a generation. In a similar flavor, Baan et al. [4] studies the
issues in the evaluation of calibration (against the human majority)
when there is intrinsic human disagreement on the label.

Remarks. Existing literature sometimes uses the terms uncer-
tainty and confidence interchangeably. They do often seemingly
coincide: When a model’s prediction has low confidence, we nat-
urally consider this as a high uncertainty case. This, however, is
treating 𝑈 (x) = −maxs𝐶 (x, s) as an uncertainty estimate. In gen-
eral, a model may exhibit high uncertainty over its output space
but still express high confidence in a specific output. Conversely, a
model could have low overall uncertainty but low confidence in a
particular prediction. While the “low uncertainty low confidence
case” is relatively less interesting in classification or regression
tasks due to MLE point prediction, this scenario is notably more
common in NLG, as the output is typically randomly sampled1 from
the predictive distribution. There are also applications that require
one but not the other (e.g. conformal language modeling [106] or
seletive generation [15]). In the rest of this paper, we sometimes
follow the language of the original papers and treat confidence

1In fact, even if the output is greedily generated, it might not have the highest confi-
dence as measured by Eq. (1).
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estimates as uncertainty, but will clearly mark the methods that
provide confidence estimates.

3 UQ Methods for Different Dimensions
3.1 Input Uncertainty
As mentioned in Section 2.1.2, input uncertainty arises from the
ambiguous or incomplete input to the LLMs and many works in the
LLMs domain try to deal with ambiguity. For example, there are
many datasets on ambiguity with different tasks such as ambiguity
detection [41, 92] and many works on dealing with ambiguity [27,
150]. However, these works did not consider uncertainty at all.

As far as we know, most uncertainty quantification methods that
care about input uncertainty focus on perturbing the input prompts
of LLMs. For instance, Hou et al. [44] proposes an approach that
generates multiple clarifications for a given prompt and ensembles
the resulting generations by using mutual information to capture
the disagreement among the predictions arising from different clar-
ifications. Similarly, Ling et al. [80] quantified the input uncertainty
in the setting of in-context learning by using different in-context
samples. Gao et al. [35] proposes SPUQ, which perturbs the input
by techniques such as paraphrasing and dummy tokens to expose
the model’s sensitivity and capture uncertainty. Specifically, SPUQ
quantified the input uncertainty by using a similarity metric such
as BERTScore [156] to measure how consistent the responses are
across different perturbations.

We can see that there are only a few papers that care about input
uncertainty and its application to ambiguity. Since ambiguity is
common and important in natural language, we call more effort
into input uncertainty and its application.

3.2 Reasoning Uncertainty
Recent research has advanced stepwise uncertainty quantification
in LLM reasoning by explicitly eliciting and analyzing the inter-
nal reasoning process. For example, Tree of Uncertain Thoughts
(TouT) [94] extends the Tree of Thoughts (ToT) [146] framework by
addressing the inherent local uncertainties that occur during inter-
mediate reasoning steps. TouT leverages Monte Carlo Dropout to
assign uncertainty scores to pivotal decision points and, by integrat-
ing these local measures with global search techniques, it enhances
the precision of response generation. Similarly, TopologyUQ [20] in-
troduces a formal method to extract and structure LLM explanations
into graph representations, quantifying reasoning uncertainty by
employing graph-edit distances and revealing redundancy through
stable topology measures. In addition, Uncertainty-aware Adaptive
Guidance (UAG) [148] tackles error accumulation in multi-step rea-
soning by monitoring the predicted probability of the next token at
each generation step, dynamically retracting to more reliable states
and incorporating certified reasoning clues when high uncertainty
is detected. Complementing thesemethods, Stable-Explanation Con-
fidence [6] quantifies uncertainty by examining the distribution of
generated explanations, treating each model’s explanation pair as a
test-time classifier to construct a posterior answer distribution that
reflects overall reasoning confidence. More recently, CoT-UQ [153]
has integrated chain-of-thought reasoning into a response-level
uncertainty quantification framework, thereby leveraging the in-
herent multi-step reasoning capability of LLMs to further improve

uncertainty assessment. Collectively, these approaches provide a
robust and interpretable framework for enhancing LLM reasoning
by quantifying uncertainty at both local and global levels.

3.3 Parameter Uncertainty
Parameter uncertainty arises when an LLM lacks sufficient knowl-
edge due to limitations in its training data or model parameters.
Parameter uncertainty reflects the model’s uncertainty about its
own predictions, which can be reduced with additional training or
better adaptation techniques.

Traditional UQ methods like Monte Carlo (MC) Dropout and
Deep Ensembles have been widely used but are computationally
infeasible for large-scale LLMs due to the need for multiple for-
ward passes or model replicas. To address this, Bayesian Low-Rank
Adaptation by Backpropagation (BLoB)[137] and Bayesian Low-
Rank Adaptation (BLoRA)[142] incorporate Bayesian modeling into
LoRA adapters, allowing uncertainty estimation through parameter
distributions without full-model ensemble. However, these methods
still incur significant computational costs.

Finetuning-based approaches offer a more practical alternative.
Techniques such as Supervised Uncertainty Estimation[81] train
auxiliary models to predict the confidence of LLM outputs based on
activation patterns and logit distributions. Similarly, Uncertainty-
aware Instruction Tuning (UaIT)[82] modifies the fine-tuning pro-
cess to explicitly train models to express uncertainty in their out-
puts. SAPLMA[3] refines probabilistic alignment techniques to dy-
namically adjust model uncertainty estimates, ensuring adaptability
to different downstream tasks. Additionally, LoRA ensembles[5]
provide an alternative to full-model ensembles by training multiple
lightweight LoRA-adapted variants of an LLM instead of retraining
the entire network.

3.4 Prediction Uncertainty
Most off-the-shelf uncertainty quantification methods focus on
prediction uncertainty since it is the most straightforward way to
estimate the uncertainty.

3.4.1 Single Round Generation. Most single-round generation
methods utilize the logit or hidden states during the generation
procedure. Single-round generation methods have the highest effi-
ciency.
Perplexity is a measure of how well a probabilistic language model
predicts a sequence of text [131] while Mora-Cross and Calderon-
Ramirez [95], Margatina et al. [89] and Manakul et al. [88] utilize
the perplexity as the uncertainty. In detail, using 𝑤𝑖 as the i-th
token in the generation, perplexity is given by:

Perplexity = exp

(
− 1
𝑁

𝑁∑︁
𝑖=1

ln𝑝 (𝑤𝑖 )
)

(3)

A higher perplexity means the model spreads its probability
more broadly over possible words, indicating that it has a higher
uncertainty.
Maximum Token Log-Probability. Apart from the perplexity,
Manakul et al. [88] also uses maximum token log-probability:

𝑀𝑎𝑥 (𝑝) = max
𝑖

(− ln𝑝 (𝑤𝑖 )) (4)
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Method Uncertainty Stages Efficency Features Access to model Confidence

Input clarification ensembles [44] Input Uncertainty Multi Rounds Generations Black-box No
Uncertainty Quantification for In-Context Learning [80] Input Uncertainty Multi Rounds Generations Black-box No
SPUQ [35] Input Uncertainty Multi Rounds Generations + Additional Model Black-box No

UAG [148] Reasoning Uncertainty Single Round Generation White-box No
CoT-UQ [153] Reasoning Uncertainty Single Round Generation White-box Yes
TouT [94] Reasoning Uncertainty Multi Rounds Generations Black-box No
TopologyUQ [20] Reasoning Uncertainty Multi Rounds Generations Black-box No
Stable Explanations Confidence [6] Reasoning Uncertainty Multi Rounds Generation Black-box Yes

SAPLMA [3] Parameter + Prediction Uncertainty Fine-tuning White-box Yes
Supervised uncertainty estimation[81] Parameter + Prediction Uncertainty Fine-tuning White-box Yes
UaIT [82] Parameter + Prediction Uncertainty Fine-tuning White-box Yes
LoRA ensembles [5] Parameter Uncertainty Fine-tuning White-box Yes
BloB [137] Parameter Uncertainty Fine-tuning White-box Yes
BLoRA [142] Parameter Uncertainty Fine-tuning White-box Yes

Perplexity [89, 95] Prediction Uncertainty Single Round Generation White-box Yes
Shifting Attention to Relevance (SAR) [30] Prediction Uncertainty Single Round Generation White-box Yes
P(True) [60] Prediction Uncertainty Single Round Generation White-box Yes
Response improbability [32] Prediction Uncertainty Single Round Generation White-box Yes
Average log probability [88] Prediction Uncertainty Single Round Generation White-box Yes
Predictive Entropy [60] Prediction Uncertainty Multi Rounds Generations White-box Yes
Relative Mahalanobis distance [112] Prediction Uncertainty Multi Rounds Generations White-box Yes
HUQ [132] Prediction Uncertainty Multi Rounds Generations White-box Yes
Conformal Prediction [65, 106] Prediction Uncertainty Multi Rounds Generations White-box No
ConU [138] Prediction Uncertainty Multi Rounds Generations White-box No
Level-adaptive conformal prediction [13] Prediction Uncertainty Multi Rounds Generations White-box No
LoFreeCP [122] Prediction Uncertainty Multi Rounds Generations Black-box No
Ecc(J),Deg(J) [78] Prediction Uncertainty Multi Rounds Generations Black-box Yes
Eig(J) [78] Prediction Uncertainty Multi Rounds Generations Black-box No
Normal length predictive entropy [87] Prediction Uncertainty Multi Rounds Generations +Additional Model White-box Yes
Semantic Entropy [63] Prediction Uncertainty Multi Rounds Generations + Additional Model White-box Yes
Kernel Semantic Entropy [101] Prediction Uncertainty Multi Rounds Generations + Additional Model White-box Yes
Ecc(C),Ecc(E),Deg(C),Deg(E) [78] Prediction Uncertainty Multi Rounds Generations + Additional Model Black-box Yes
Eig(C),Eig(E) [78] Prediction Uncertainty Multi Rounds Generations + Additional Model Black-box No
MD-UQ [10] Prediction Uncertainty Multi Rounds Generations + Additional Model Black-box No
D-UE [17] Prediction Uncertainty Multi Rounds Generations + Additional Model Black-box Yes

Table 2: An overview of uncertainty quantification methods discussed in this paper.

Maximum token log-probability measures the sentence’s likeli-
hood by assessing the least likely token in the sentence. A higher
Maximum(𝑝) indicates higher uncertainty of the whole generation.
Entropy reflects how widely distributed a model’s predictions are
for a given input, indicating the level of uncertainty in its out-
puts [60, 63, 86].Entropy for the i-th token is provided by:

H𝑖 = −
∑︁
�̃�∈D

𝑝𝑖 (�̃�) log𝑝𝑖 (�̃�) (5)

Then it is possible to use the mean or maximum value of entropy
as the final uncertainty [88]:

𝐴𝑣𝑔(H) = 1
𝑁

𝑁∑︁
𝑖=1

H𝑖 ;𝑀𝑎𝑥 (H) = max
𝑖

(H𝑖 ) (6)

Furthermore, Shifting Attention to Relevance (SAR), proposed
by Duan et al. [30], enhanced the performance of entropy by ad-
justing attention to more relevant tokens inside the sentence. In
detail, SAR assigned weight forH𝑖 and the weight 𝑅(𝑤𝑖 , 𝑠, 𝑥) can
be obtained by:

𝑅(𝑤𝑖 , 𝑠, 𝑥) = 1 − |𝑔(𝑥 ∪ 𝑠, 𝑥 ∪ 𝑠 \ {𝑤𝑖 }) | , (7)

Where𝑔 is a function that measures the semantic similarity between
two sentences such as NLI models.
Response Improbability. Fadeeva et al. [32] uses response im-
probability, which computes the probability of a given sentence

and subtracts the resulting value from one. In detail, response im-
probability is provided by:

𝑀𝑃 (𝑠) = 1 −
∏
𝑖=1

𝑝𝑖 (𝑤𝑖 ) . (8)

If the sentence is very certain (i.e., the product of token probabilities
is high),𝑀𝑃 (𝑠) will be low.
P(True) Kadavath et al. [60] proposes P(True)2, which measures
the uncertainty of the claim by asking the LLM itself whether the
generation is true or not. Specifically, P(True) is calculated:

P(True) = 1 − 𝑝 (𝑦1 = “True”) . (9)

Note that here we are using 𝑦1 as the first token instead of 𝑤1
because𝑤1 represents the first token to the generation 𝑠 while 𝑦1
represented the first token when asking LLM whether the gener-
ation 𝑠 is correct or not. P(True) requires to run the LLM twice.
However, it does not require multiple generations 𝑠 . Therefore, we
still classify this method to single-round generation. (This could be
considered an uncertainty estimate as the sequence to be evaluated
is the prediction given the input.)

3.4.2 Multiple rounds generation. Multiple rounds generation
methods estimate uncertainty by generating multiple predictions
from the LLMs and analyzing their consistency, similarity, or vari-
ability. These approaches assume that if a model is confident, its
outputs should be stable across different sampling conditions.

2The original name is P(IK), which stands for “I Know”.
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Token-Level Entropy. Token-level entropy quantifies uncertainty
in LLMs by analyzing the probability distribution of generated
tokens across multiple samples. A confident model assigns high
probability to a specific token, resulting in low entropy, while un-
certain predictions distribute probability across multiple tokens,
leading to higher entropy.

Multiple responses are generated for the same input to estimate
token-level entropy, and the entropy of the token probability dis-
tribution is computed. For example, predictive entropy [60] can
also be applied to multiple response settings and shows a better
uncertainty quality based on multiple outputs variability. Similarly,
SAR [30] could also be applied to multiple responses. Another study
refines this method with Monte Carlo-based approximations [87].
It focuses on how probability distributions evolve across tokens
during autoregressive generation. There are two main approaches:
one that directly estimates uncertainty by averaging entropy across
multiple sampled outputs and another that decomposes sequence-
level uncertainty into token-level contributions using a structured
entropy approximation.
Conformal Prediction. Conformal Prediction (CP) is a statistical
framework that provides formal coverage guarantees for uncer-
tainty estimation in LLMs. It has been widely adopted in recent
research due to its distribution-free properties, making it suitable
for both black-box and white-box models.

In the black-box setting, where model internals are inaccessible,
CP estimates uncertainty using response frequency, semantic simi-
larity, or self-consistency. One study proposes a method tailored for
API-only LLMs [122], using frequency-based sampling combined
with normalized entropy (NE) and semantic similarity (SS) to define
nonconformity scores. Another black-box CP method introduces
a self-consistency-based uncertainty measure [138], which clus-
ters sampled generations and selects a representative response to
construct prediction sets with correctness guarantees, making it
particularly effective for open-ended NLG tasks.

On the other hand, white-box CPmethods use logits, internal acti-
vations, and calibration techniques for more refined uncertainty es-
timation. One study proposes Conformal Language Modeling [106],
which integrates CP with autoregressive text generation by dynam-
ically calibrating a stopping rule to ensure at least one response
in the generated set is statistically valid. Another work adapts CP
for multiple-choice QA [65], using model confidence scores to cali-
brate prediction sets, ensuring coverage with minimal set size. A
more advanced technique, conditional CP [13], dynamically adjusts
coverage guarantees based on the difficulty of the input, optimizing
prediction set size while maintaining reliability.
Consistency-BasedMethods.Consistency-based uncertainty esti-
mation methods analyze the agreement betweenmultiple generated
responses from an LLM to determine uncertainty. The underlying
assumption is that if the model is confident, its responses should
be consistent, while high variability among responses suggests un-
certainty. One approach leverages Jaccard similarity [78], which
measures the overlap between words in different generations. This
method evaluates the deviation from self-consistency, where a high
Jaccard similarity across generations implies low uncertainty.

However, in natural language generation (NLG) tasks, word-level
similarity alone is insufficient, as different responses can convey

the same meaning using different phrasing. To address this prob-
lem, some methods incorporate external models to assess semantic
similarity rather than relying solely on lexical overlap.

3.4.3 Multiple Rounds Generation with External Models. Semantic-
based uncertainty estimation methods extend multiple rounds of
generation by incorporating external models to assess the consis-
tency of generated responses beyond lexical similarity.
Semantic Entropy. Semantic Entropy (SE) [63], refines uncertainty
estimation by clustering generated responses based on semantic
equivalence. This approach uses a Natural Language Inference
(NLI) model to determine entailment relationships among responses,
grouping them into meaning-preserving clusters. Instead of cal-
culating entropy over individual responses, SE computes entropy
over these clusters. Another method, Kernel Language Entropy
(KLE), applies a kernel-based framework to quantify semantic un-
certainty [101]. To enhance the performance of semantic entropy,
KLE represents them in a semantic space using positive semidefinite
kernels. By computing von Neumann entropy over these response
distributions, KLE provides an even more fine-grained measure of
uncertainty that considers nuanced semantic variations.
Semantic Similarity. Semantic similarity uncertainty methods
use Natural Language Inference (NLI) models to measure the se-
mantic relationships between multiple generated responses from
an LLM [78]. Instead of relying on lexical overlap, these approaches
construct a similarity matrix based on entailment and contradiction
scores between generated outputs. A confident model produces
responses with high internal consistency, while greater semantic
dispersion in the similarity matrix indicates higher uncertainty.

To quantify this dispersion, graph-based spectral metrics are ap-
plied. Eccentricity (Ecc) measures the spread of response variability,
eigenvalue-based measures (Eig) analyze the spectral properties of
the similarity matrix to detect uncertainty, and degree (Deg) evalu-
ates response connectivity, with higher degrees indicating stronger
confidence. Chen et al. [10] proposes MD-UQ, which enhanced the
performance of graph-based spectral metrics by using an additional
knowledge dimension input extracted from an auxiliary LLM and
tensor decomposition while Da et al. [17] also enhanced the perfor-
mance by analyzing the directed graph instead of undirected graph
originally from Lin et al. [78].

4 Evaluation of Uncertainty in LLMs
4.1 Benchmark Datasets
Datasets used in previous studies can be organized into several cat-
egories based on their focus. Reading comprehension benchmarks
include CoQA for conversational Q&A, RACE for general read-
ing comprehension, TriviaQA for fact-based questions, CosmosQA
for contextual understanding, SQuAD for question-answering on
passages, and HotpotQA for multi-hop reasoning. Reasoning and
math benchmarks include HotpotQA and StrategyQA, which test
multi-hop reasoning, GSM8K for solving math problems, and Cali-
bratedMath, designed to evaluate confidence expression in arith-
metic. Factuality evaluation draws on datasets such as TruthfulQA
for addressing common misconceptions, FEVER for claim verifi-
cation, and HaluEval for detecting hallucinations, and annotated
FActScore dataset for evaluating the factuality of long-form text



UncertaintyQuantification and Confidence Calibration in Large Language Models: A Survey KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Category Benchmarks

Reading Compre-
hension

TriviaQA [59], CoQA [110], RACE [66], Cos-
mosQA [47], SQuAD [107], HotpotQA [144]

Reasoning & Math StrategyQA [36], HotpotQA [144],
GSM8K [14], CalibratedMath [76]

Factuality TruthfulQA [77], FEVER [124], HaluE-
val [71], FActScore [91]

General Knowledge MMLU [42], GPQA [111], HellaSwag [151]
Consistency & Am-
biguity

ParaRel [31], AmbigQA [93], Ambi-
gInst [44]

Table 3: Categorization of datasets and benchmarks.
generated by LLMs [154]. Several general knowledge benchmarks
have been adapted for uncertainty quantification, such as MMLU
for a wide range of subjects, GPQA for multiple-choice questions
in physical sciences, and HellaSwag for common-sense reasoning
through sentence completion. These benchmarks can be adapted
for UQ because the task reduces to a binary classification prob-
lem—determining whether the model is confident or uncertain. The
structured nature of these benchmarks allows for clear evaluation
of the model’s confidence in its predictions.

Additional categories include consistency benchmarks such as
ParaRel, which tests semantic consistency across 328 paraphrases
for 38 relations, and datasets like AmbigQA and AmbigInst, which
feature inherent ambiguities. Ambiguity datasets are useful in un-
certainty quantification (UQ) evaluation because they introduce
aleatoric uncertainty by highlighting cases where multiple plausible
interpretations exist, helping to assess how well models distinguish
between data-driven randomness and model-based uncertainty.
These datasets enable a more precise decomposition of uncertainty
into aleatoric and epistemic components, improving model reliabil-
ity and interpretability.

Recently, there have been efforts to introduce dedicated uncer-
tainty quantification (UQ) benchmarks for large language models
(LLMs). Yang et al. [143] introduced MAQA, a dataset specifically
designed to evaluate epistemic uncertainty in language models.
Fadeeva et al. [33] created LM-Polygraph, which was later adopted
as a comprehensive uncertainty benchmark by Vashurin et al. [130].
Ye et al. [147] developed a benchmark using conformal prediction
across five common NLP tasks. These contributions represent spe-
cialized datasets explicitly designed to assess UQ capabilities in
LLMs, rather than adapting existing general-purpose benchmarks.
Overall, we show the categorization of datasets and benchmarks
for UQ in Table 3.

4.2 Evaluation Metrics
Uncertainty quantification (UQ) is often evaluated as a binary clas-
sification task, the rationale being that high uncertainty should
correspond to low expected accuracy. This is typically modeled by
assigning a binary label to each response with a correctness function
and using the uncertainty estimates to predict the label. AUROC
(Area Under the Receiver Operating Characteristic curve), which
measures how effectively the uncertainty score separates correct
from incorrect responses, is often used. With values ranging from
0 to 1, higher AUROCs indicate better performance. Responses
with confidence above the threshold are classified as predicted pos-
itives, while those below are treated as predicted negatives. Many

prior studies use AUROC to evaluate how well uncertainty score
discriminates correct from incorrect predictions [8, 63, 78, 81, 140].

Similarly, AUPRC (Area Under the Precision-Recall Curve) and
AUARC (Area Under the Accuracy-Rejection Curve) [100] also
offer further insights into uncertainty quantification. AUPRC mea-
sures how well the uncertainty score separates correct from in-
correct responses [80], while AUARC assesses how effectively the
uncertainty measure aids in selecting accurate responses by deter-
mining which uncertain questions to reject [79].

In the context of NLG where the correctness label is hard to
obtain, researchers also compute heuristic-based (fuzzy matching)
metrics such as BLEU [104] and ROUGE [63] between the gener-
ated text and the reference output(s) to gauge the quality. However,
these metrics often fail to capture semantic fidelity or factual cor-
rectness. Consequently, many researchers are increasingly turning
to LLM-as-a-judge evaluations, wherein a large language model
(e.g., GPT-4) is prompted to assess text quality or correctness. This
approach can capture nuanced aspects like coherence, style, and
factuality, but also introduces risks of bias and inconsistency. Hu-
man annotation, however, is expensive and is often limited to a
small scale [63, 154].

Apart from the binary classification framework, there are also
multiple evaluation methods designed for specific treatment of un-
certainty, sometimes qualitative. For example, focusing on decom-
posing aleatoric and epistemic uncertainty, Hou et al. [44] evaluates
only the aleatoric part by using AmbigQA [93], as high ambiguity
questions should incur higher aleatoric uncertainty (whereas math
questions, for examples, might have lower). The evaluation in Giu-
lianelli et al. [37], on the other hand, is a comparison between the
variability of human production (generation) with that of the LM.
With an emphasis on UQ for longer generations, Zhang et al. [154]
compare the uncertainty estimate against FActScore [91], as the
“correctness” of a long paragraph could be ill-defined or ambiguous.

5 Applications in LLMs
LLMs are increasingly applied in diverse domains, offering flexibil-
ity and reasoning capabilities [23]. However, uncertainty quantifica-
tion (UQ) is crucial for ensuring their reliability, particularly in high-
stakes applications like Education [69] and healthcare [24, 115].
This section will introduce the applications that integrate the UQ
of LLMs from different domains.
Robotics. LLM-based robotic planning suffers from ambiguity and
hallucinations, motivating the need for uncertainty quantification in
the planning loop. For example, closed-loop planners [166] employs
an uncertainty-based failure detector to continuously assess and
adjust plans in real-time, while non-parametric UQ method [126]
use an efficient querying strategy to improve reliability. In addi-
tion, ’LAP’ [97] integrates action feasibility checks to align the
LLM’s confidence with real-world constraints, improving success
rates from approximately 70% to 80%. Similarly, adaptive skill se-
lection [102] dynamically adjusts thresholds for alternative paths,
achieving higher success rates in the ALFRED domain. Finally, in-
trospective planning [74] enables LLMs to self-assess uncertainty,
enhancing safety and human-robot collaboration.
Transportation. Preliminary research explores how LLMs can
enhance transportation systems [19]. For example, LLM inference
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has been used to bridge the sim-to-real gap in Traffic Signal Con-
trol policies [18, 21, 22], and LLM agents have been shown to help
smooth mixed-autonomy traffic [145]. However, both cases reveal
the potential risk posed by hallucination. A few works have inves-
tigated the uncertainty measure while using the LLMs as in [25]; it
tries to link the use of visual language models (VLMs) with deep
probabilistic programming for uncertainty quantification while con-
ductingmultimodal traffic accident forecasting tasks and [17] shows
a general solution by modeling the responses as a directed-graph
and captures the response uncertainty. Further, UQ exploration
anchored on traffic-related LLM use is expected.
Healthcare. In healthcare, LLMs (VLMs) can be good reference
for diagnosis, but uncertainty is a critical dimension that should
be output together with the generation for more reliable treatment
plans. Such as [114] evaluates the ability of uncertainty metrics to
quantify LLM confidence when performing diagnosis and treatment
selection tasks by assessing the properties of discrimination and
calibration. [11] first quantify uncertainty in white-box models with
access to model parameters and output logits, and by this, it reveals
that an effective reduction of model uncertainty can be achieved by
using the proposed multi-tasking and ensemble methods in EHRs.
With these findings, however, as [139] benchmarks popular uncer-
tain quantification methods with different model sizes on medical
question-answering datasets, authors find that the challenge of UQ
for medical applications is still severe.
Education.Many LLM-related products are popular to guide the
thinking of students in AI for Education research [160]. However,
it is critical to ensure the trustworthiness of LLMs if to partici-
pate in a person’s thinking logic learning process [109]. The work
in [127] discusses the solutions of black-box models UQ evaluation,
including Graph Laplacian Eigenvalue Sum, Lexical Similarity, and
their reliability. [20] proposes a method that elicits the reasoning
topology of the LLM answering process, which can guide the step-
by-step analysis of the LLM’s reasoning steps before applying it to
the student reference guide.
Conclusion. There are many different fields that discuss the need
for uncertainty quantification during the LLMs execution process,
and the above-discussed ones are only major aspects for now, the
multi-agent energymanagement, operation research, etc, all employ
LLMs and would require such consideration respectively.

6 Challenges and Future Directions
While significant strides have been made in integrating uncertainty
quantification into Large Language Models, several unaddressed
challenges persist. This section will explore these unresolved is-
sues, ranging from efficiency-performance trade-offs to cross-modal
uncertainty, and outline promising avenues for future research,
aiming to advance the reliability and trustworthiness of LLMs in
high-stakes applications.
Efficiency-Performance Trade-offs. Multi-sample uncertainty
methods incur prohibitive costs for trillion-parameter LLMs ($12k
per million queries [70]), yet yield marginal reliability gains (≤ 0.02
AUROC improvement [141]). Hybrid approaches combining low-
cost proxies (attention variance [43], hidden state clustering [101])
could resolve this by achieving 90% of maximal performance at

10% computational cost. For example, precomputing uncertainty
“hotspots" during inference could trigger targeted multi-sampling
only for high-risk outputs like medical diagnoses.
Interpretability Deficits. Users struggle to distinguish whether
uncertainty stems from ambiguous inputs (“Explain quantum grav-
ity"), knowledge gaps, or decoding stochasticity—a critical barrier
in high-stakes domains. Modular architectures that decouple uncer-
tainty estimation layers [46, 117] or employ causal tracing of trans-
former attention pathways [134] could clarify uncertainty origins.
For instance, perturbing model weights [34] might reveal paramet-
ric uncertainty in low-resource languages, while input modules flag
underspecified terms ("this country") for clarification.
Cross-Modality Uncertainty. Integrating vision, text, and sensor
data introduces misaligned confidence estimates between modal-
ities: LVLMs exhibit 2.4× higher uncertainty in visual vs. textual
components [158], causing 63% of errors in multi-modal QA [155].
Dynamic contrastive decoding and uncertainty-aware fusion proto-
cols show promise[52, 123], but require domain-specific adaptations
(e.g., aligning radiology images with reports [73, 161]). Future work
must develop unified uncertainty embeddings to harmonize modal-
ity confidence scales and adversarial training against cross-modal
backdoor attacks [75, 133, 159].
Interventions for Uncertainty. Real-time uncertainty monitor-
ing enables self-correction (e.g., retracting erroneous reasoning
steps [148]), but adds 300 to 500ms latency per decoding itera-
tion [141]. Lightweight monitors via attention variance distilla-
tion [39, 49] and human-in-the-loop calibration [136] could miti-
gate overhead while addressing security risks like adversarial un-
certainty manipulation (100% attack success rates [152]). Certified
defense mechanisms and causal propagation tracing [40] are crit-
ical for deploying uncertainty-guided interventions in sensitive
applications.
UQ Evaluation. There are several challenges to effectively evaluat-
ing UQ quality. There are limitations in adopting a binary classifica-
tion evaluation approach: It is challenging to decide if a free-form
generation is correct even in a QA dataset, let alone more open-
ended tasks. Also, even LLM-as-a-judge suffers systematic biases
including self-preference bias (where an LLM judge may favor an-
swers written in a style similar to its own) [103], length bias (where
LLM judges often prefer longer, more detailed answers) [77], and
position bias (where the order of presented answers influences the
judgment) [164]. Moreover, current evaluation methods, such as
AUROC and AUARC, fall short in capturing nuanced, “meaningful”
uncertainty. For instance, they often do not differentiate between
cases where a model is confidently wrong (hallucinations) and cases
where it expresses a prudent level of uncertainty. Finally, a signifi-
cant practical challenge in evaluating UQ for LLMs is the lack of
suitable datasets that align with what we want to measure. Many
benchmarks exist to test LLM capabilities (from reading compre-
hension to factual QA), but few are explicitly designed for UQ.

7 Conclusion
In this survey, we offer a comprehensive overview of uncertainty
quantification (UQ) in Large Language Models (LLMs). Initially, we
introduce the fundamental concepts relevant to both UQ and LLMs,
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highlighting the importance of reliability in high-stakes applica-
tions. Following this, we propose a detailed taxonomy for character-
izing uncertainty dimensions in LLMs, including input, reasoning,
parameter, and prediction uncertainty. In terms of methodologies,
we systematically evaluate UQ methods using our novel taxonomy,
thoroughly reviewing their effectiveness across different uncer-
tainty types. Ultimately, we identify and discuss some of the per-
sistent challenges in UQ for LLMs, providing insightful directions
for future research. The primary goal of this survey is to promote a
more seamless integration of UQ techniques into LLM development,
motivating both machine learning researchers and practitioners to
delve into this rapidly advancing area.
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